[docs]classAdam(Optimizer):def__init__(self,params,lr=1e-3,betas=(0.9,0.999),eps=1e-8,weight_decay=0,amsgrad=False,*,foreach:Optional[bool]=None,maximize:bool=False,capturable:bool=False,differentiable:bool=False,fused:Optional[bool]=None):ifnot0.0<=lr:raiseValueError("Invalid learning rate: {}".format(lr))ifnot0.0<=eps:raiseValueError("Invalid epsilon value: {}".format(eps))ifnot0.0<=betas[0]<1.0:raiseValueError("Invalid beta parameter at index 0: {}".format(betas[0]))ifnot0.0<=betas[1]<1.0:raiseValueError("Invalid beta parameter at index 1: {}".format(betas[1]))ifnot0.0<=weight_decay:raiseValueError("Invalid weight_decay value: {}".format(weight_decay))defaults=dict(lr=lr,betas=betas,eps=eps,weight_decay=weight_decay,amsgrad=amsgrad,maximize=maximize,foreach=foreach,capturable=capturable,differentiable=differentiable,fused=fused)super().__init__(params,defaults)iffused:ifdifferentiable:raiseRuntimeError("`fused` does not support `differentiable`")self._step_supports_amp_scaling=True# TODO(crcrpar): [low prec params & their higher prec copy]# Suppor AMP with FP16/BF16 model params which would need# higher prec copy of params to do update math in higher prec to# alleviate the loss of information.ifnotall(p.is_cudaandtorch.is_floating_point(p)forpginself.param_groupsforpinpg['params']):raiseRuntimeError("`fused=True` requires all the params to be CUDA, floating point Tensor")ifforeach:raiseRuntimeError("`fused` and `foreach` cannot be `True` together.")def__setstate__(self,state):super().__setstate__(state)forgroupinself.param_groups:group.setdefault('amsgrad',False)group.setdefault('maximize',False)group.setdefault('foreach',None)group.setdefault('capturable',False)group.setdefault('differentiable',False)group.setdefault('fused',None)state_values=list(self.state.values())step_is_tensor=(len(state_values)!=0)andtorch.is_tensor(state_values[0]['step'])ifnotstep_is_tensor:forsinstate_values:s['step']=torch.tensor(float(s['step']))def_init_group(self,group,params_with_grad,grads,exp_avgs,exp_avg_sqs,max_exp_avg_sqs,state_steps):forpingroup['params']:ifp.gradisnotNone:params_with_grad.append(p)ifp.grad.is_sparse:raiseRuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')grads.append(p.grad)state=self.state[p]# Lazy state initializationiflen(state)==0:state['step']=(torch.zeros((1,),dtype=torch.float,device=p.device)ifgroup['capturable']orgroup['fused']elsetorch.tensor(0.))# Exponential moving average of gradient valuesstate['exp_avg']=torch.zeros_like(p,memory_format=torch.preserve_format)# Exponential moving average of squared gradient valuesstate['exp_avg_sq']=torch.zeros_like(p,memory_format=torch.preserve_format)ifgroup['amsgrad']:# Maintains max of all exp. moving avg. of sq. grad. valuesstate['max_exp_avg_sq']=torch.zeros_like(p,memory_format=torch.preserve_format)exp_avgs.append(state['exp_avg'])exp_avg_sqs.append(state['exp_avg_sq'])ifgroup['amsgrad']:max_exp_avg_sqs.append(state['max_exp_avg_sq'])ifgroup['differentiable']andstate['step'].requires_grad:raiseRuntimeError('`requires_grad` is not supported for `step` in differentiable mode')state_steps.append(state['step'])@_use_grad_for_differentiabledefstep(self,closure=None):"""Performs a single optimization step. Args: closure (Callable, optional): A closure that reevaluates the model and returns the loss. """self._cuda_graph_capture_health_check()loss=NoneifclosureisnotNone:withtorch.enable_grad():loss=closure()forgroupinself.param_groups:params_with_grad=[]grads=[]exp_avgs=[]exp_avg_sqs=[]max_exp_avg_sqs=[]state_steps=[]beta1,beta2=group['betas']self._init_group(group,params_with_grad,grads,exp_avgs,exp_avg_sqs,max_exp_avg_sqs,state_steps)adam(params_with_grad,grads,exp_avgs,exp_avg_sqs,max_exp_avg_sqs,state_steps,amsgrad=group['amsgrad'],beta1=beta1,beta2=beta2,lr=group['lr'],weight_decay=group['weight_decay'],eps=group['eps'],maximize=group['maximize'],foreach=group['foreach'],capturable=group['capturable'],differentiable=group['differentiable'],fused=group['fused'],grad_scale=getattr(self,"grad_scale",None),found_inf=getattr(self,"found_inf",None),)returnloss
Adam.__doc__=r"""Implements Adam algorithm. .. math:: \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma \text{ (lr)}, \beta_1, \beta_2 \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)} \\ &\hspace{13mm} \lambda \text{ (weight decay)}, \: \textit{amsgrad}, \:\textit{maximize} \\ &\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)}, v_0\leftarrow 0 \text{ (second moment)},\: \widehat{v_0}^{max}\leftarrow 0\\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}\textbf{if} \: \textit{maximize}: \\ &\hspace{10mm}g_t \leftarrow -\nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}\textbf{else} \\ &\hspace{10mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}\textbf{if} \: \lambda \neq 0 \\ &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ &\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\ &\hspace{5mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \\ &\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\ &\hspace{5mm}\textbf{if} \: amsgrad \\ &\hspace{10mm}\widehat{v_t}^{max} \leftarrow \mathrm{max}(\widehat{v_t}^{max}, \widehat{v_t}) \\ &\hspace{10mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t}/ \big(\sqrt{\widehat{v_t}^{max}} + \epsilon \big) \\ &\hspace{5mm}\textbf{else} \\ &\hspace{10mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t}/ \big(\sqrt{\widehat{v_t}} + \epsilon \big) \\ &\rule{110mm}{0.4pt} \\[-1.ex] &\bf{return} \: \theta_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] \end{aligned} For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_. """+r""" Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (bool, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False){foreach}{maximize}{capturable}{differentiable}{fused} .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """.format(foreach=_foreach_doc,maximize=_maximize_doc,capturable=_capturable_doc,differentiable=_differentiable_doc,fused=_fused_doc)defadam(params:List[Tensor],grads:List[Tensor],exp_avgs:List[Tensor],exp_avg_sqs:List[Tensor],max_exp_avg_sqs:List[Tensor],state_steps:List[Tensor],# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627# setting this as kwarg for now as functional API is compiled by torch/distributed/optimforeach:Optional[bool]=None,capturable:bool=False,differentiable:bool=False,fused:Optional[bool]=None,grad_scale:Optional[Tensor]=None,found_inf:Optional[Tensor]=None,*,amsgrad:bool,beta1:float,beta2:float,lr:float,weight_decay:float,eps:float,maximize:bool):r"""Functional API that performs Adam algorithm computation. See :class:`~torch.optim.Adam` for details. """# Respect when the user inputs False/True for foreach or fused. We only want to change# the default when neither have been user-specified. Note that we default to foreach# and pass False to use_fused. This is not a mistake--we want to give the fused impl# bake-in time before making it the default, even if it is typically faster.iffusedisNoneandforeachisNone:_,foreach=_default_to_fused_or_foreach(params,differentiable,use_fused=False)iffusedisNone:fused=FalseifforeachisNone:foreach=Falseifnotall(isinstance(t,torch.Tensor)fortinstate_steps):raiseRuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors")ifforeachandtorch.jit.is_scripting():raiseRuntimeError('torch.jit.script not supported with foreach optimizers')iffusedandnottorch.jit.is_scripting():func=_fused_adamelifforeachandnottorch.jit.is_scripting():func=_multi_tensor_adamelse:func=_single_tensor_adamfunc(params,grads,exp_avgs,exp_avg_sqs,max_exp_avg_sqs,state_steps,amsgrad=amsgrad,beta1=beta1,beta2=beta2,lr=lr,weight_decay=weight_decay,eps=eps,maximize=maximize,capturable=capturable,differentiable=differentiable,grad_scale=grad_scale,found_inf=found_inf)def_single_tensor_adam(params:List[Tensor],grads:List[Tensor],exp_avgs:List[Tensor],exp_avg_sqs:List[Tensor],max_exp_avg_sqs:List[Tensor],state_steps:List[Tensor],grad_scale:Optional[Tensor],found_inf:Optional[Tensor],*,amsgrad:bool,beta1:float,beta2:float,lr:float,weight_decay:float,eps:float,maximize:bool,capturable:bool,differentiable:bool):assertgrad_scaleisNoneandfound_infisNonefori,paraminenumerate(params):grad=grads[i]ifnotmaximizeelse-grads[i]exp_avg=exp_avgs[i]exp_avg_sq=exp_avg_sqs[i]step_t=state_steps[i]ifcapturable:assertparam.is_cudaandstep_t.is_cuda,"If capturable=True, params and state_steps must be CUDA tensors."# update stepstep_t+=1ifweight_decay!=0:grad=grad.add(param,alpha=weight_decay)iftorch.is_complex(param):grad=torch.view_as_real(grad)exp_avg=torch.view_as_real(exp_avg)exp_avg_sq=torch.view_as_real(exp_avg_sq)param=torch.view_as_real(param)# Decay the first and second moment running average coefficientexp_avg.mul_(beta1).add_(grad,alpha=1-beta1)exp_avg_sq.mul_(beta2).addcmul_(grad,grad.conj(),value=1-beta2)ifcapturableordifferentiable:step=step_t# 1 - beta1 ** step can't be captured in a CUDA graph, even if step is a CUDA tensor# (incurs "RuntimeError: CUDA error: operation not permitted when stream is capturing")bias_correction1=1-torch.pow(beta1,step)bias_correction2=1-torch.pow(beta2,step)step_size=lr/bias_correction1step_size_neg=step_size.neg()bias_correction2_sqrt=bias_correction2.sqrt()ifamsgrad:# Maintains the maximum of all 2nd moment running avg. till nowifdifferentiable:max_exp_avg_sqs_i=max_exp_avg_sqs[i].clone()else:max_exp_avg_sqs_i=max_exp_avg_sqs[i]max_exp_avg_sqs[i].copy_(torch.maximum(max_exp_avg_sqs_i,exp_avg_sq))# Uses the max. for normalizing running avg. of gradient# Folds in (admittedly ugly) 1-elem step_size math here to avoid extra param-set-sized read+write# (can't fold it into addcdiv_ below because addcdiv_ requires value is a Number, not a Tensor)denom=(max_exp_avg_sqs[i].sqrt()/(bias_correction2_sqrt*step_size_neg)).add_(eps/step_size_neg)else:denom=(exp_avg_sq.sqrt()/(bias_correction2_sqrt*step_size_neg)).add_(eps/step_size_neg)param.addcdiv_(exp_avg,denom)else:step=_get_value(step_t)bias_correction1=1-beta1**stepbias_correction2=1-beta2**stepstep_size=lr/bias_correction1bias_correction2_sqrt=_dispatch_sqrt(bias_correction2)ifamsgrad:# Maintains the maximum of all 2nd moment running avg. till nowtorch.maximum(max_exp_avg_sqs[i],exp_avg_sq,out=max_exp_avg_sqs[i])# Use the max. for normalizing running avg. of gradientdenom=(max_exp_avg_sqs[i].sqrt()/bias_correction2_sqrt).add_(eps)else:denom=(exp_avg_sq.sqrt()/bias_correction2_sqrt).add_(eps)param.addcdiv_(exp_avg,denom,value=-step_size)def_multi_tensor_adam(params:List[Tensor],grads:List[Tensor],exp_avgs:List[Tensor],exp_avg_sqs:List[Tensor],max_exp_avg_sqs:List[Tensor],state_steps:List[Tensor],grad_scale:Optional[Tensor],found_inf:Optional[Tensor],*,amsgrad:bool,beta1:float,beta2:float,lr:float,weight_decay:float,eps:float,maximize:bool,capturable:bool,differentiable:bool):iflen(params)==0:returnifcapturable:assertall(p.is_cudaandstep.is_cudaforp,stepinzip(params,state_steps)), \
"If capturable=True, params and state_steps must be CUDA tensors."assertgrad_scaleisNoneandfound_infisNoneassertnotdifferentiable,"_foreach ops don't support autograd"grouped_tensors=_group_tensors_by_device_and_dtype([params,grads,exp_avgs,exp_avg_sqs,max_exp_avg_sqs,state_steps])for(device_params,device_grads,device_exp_avgs,device_exp_avg_sqs,device_max_exp_avg_sqs,device_state_steps)ingrouped_tensors.values():ifmaximize:device_grads=torch._foreach_neg(tuple(device_grads))# type: ignore[assignment]# Handle complex parametersdevice_grads=[torch.view_as_real(x)iftorch.is_complex(x)elsexforxindevice_grads]device_exp_avgs=[torch.view_as_real(x)iftorch.is_complex(x)elsexforxindevice_exp_avgs]device_exp_avg_sqs=[torch.view_as_real(x)iftorch.is_complex(x)elsexforxindevice_exp_avg_sqs]params_=[torch.view_as_real(x)iftorch.is_complex(x)elsexforxindevice_params]# update stepstorch._foreach_add_(device_state_steps,1)ifweight_decay!=0:device_grads=torch._foreach_add(device_grads,device_params,alpha=weight_decay)# Decay the first and second moment running average coefficienttorch._foreach_mul_(device_exp_avgs,beta1)torch._foreach_add_(device_exp_avgs,device_grads,alpha=1-beta1)torch._foreach_mul_(device_exp_avg_sqs,beta2)torch._foreach_addcmul_(device_exp_avg_sqs,device_grads,device_grads,1-beta2)ifcapturable:# TODO: use foreach_pow if/when foreach_pow is addedbias_correction1=[torch.pow(beta1,step)forstepindevice_state_steps]bias_correction2=[torch.pow(beta2,step)forstepindevice_state_steps]# foreach_sub doesn't allow a scalar as the first argtorch._foreach_sub_(bias_correction1,1)torch._foreach_sub_(bias_correction2,1)torch._foreach_neg_(bias_correction1)torch._foreach_neg_(bias_correction2)# foreach_div doesn't allow a scalar as the first argstep_size=torch._foreach_div(bias_correction1,lr)torch._foreach_reciprocal_(step_size)torch._foreach_neg_(step_size)bias_correction2_sqrt=torch._foreach_sqrt(bias_correction2)ifamsgrad:# Maintains the maximum of all 2nd moment running avg. till nowtorch._foreach_maximum_(device_max_exp_avg_sqs,device_exp_avg_sqs)# type: ignore[assignment]# Use the max. for normalizing running avg. of gradientmax_exp_avg_sq_sqrt=torch._foreach_sqrt(device_max_exp_avg_sqs)# Folds in (admittedly ugly) 1-elem step_size math here to avoid extra param-set-sized read+write# (can't fold it into addcdiv_ below because addcdiv_ requires value is a Number, not a Tensor)torch._foreach_div_(max_exp_avg_sq_sqrt,torch._foreach_mul(bias_correction2_sqrt,step_size))eps_over_step_size=torch._foreach_div(step_size,eps)torch._foreach_reciprocal_(eps_over_step_size)denom=torch._foreach_add(max_exp_avg_sq_sqrt,eps_over_step_size)else:exp_avg_sq_sqrt=torch._foreach_sqrt(device_exp_avg_sqs)torch._foreach_div_(exp_avg_sq_sqrt,torch._foreach_mul(bias_correction2_sqrt,step_size))eps_over_step_size=torch._foreach_div(step_size,eps)torch._foreach_reciprocal_(eps_over_step_size)denom=torch._foreach_add(exp_avg_sq_sqrt,eps_over_step_size)torch._foreach_addcdiv_(params_,device_exp_avgs,denom)else:bias_correction1=[1-beta1**_get_value(step)forstepindevice_state_steps]bias_correction2=[1-beta2**_get_value(step)forstepindevice_state_steps]step_size=_stack_if_compiling([(lr/bc)*-1forbcinbias_correction1])bias_correction2_sqrt=[_dispatch_sqrt(bc)forbcinbias_correction2]ifamsgrad:# Maintains the maximum of all 2nd moment running avg. till nowtorch._foreach_maximum_(device_max_exp_avg_sqs,device_exp_avg_sqs)# Use the max. for normalizing running avg. of gradientmax_exp_avg_sq_sqrt=torch._foreach_sqrt(device_max_exp_avg_sqs)torch._foreach_div_(max_exp_avg_sq_sqrt,bias_correction2_sqrt)denom=torch._foreach_add(max_exp_avg_sq_sqrt,eps)else:exp_avg_sq_sqrt=torch._foreach_sqrt(device_exp_avg_sqs)torch._foreach_div_(exp_avg_sq_sqrt,bias_correction2_sqrt)denom=torch._foreach_add(exp_avg_sq_sqrt,eps)torch._foreach_addcdiv_(params_,device_exp_avgs,denom,step_size)def_fused_adam(params:List[Tensor],grads:List[Tensor],exp_avgs:List[Tensor],exp_avg_sqs:List[Tensor],max_exp_avg_sqs:List[Tensor],state_steps:List[Tensor],grad_scale:Optional[Tensor],found_inf:Optional[Tensor],*,amsgrad:bool,beta1:float,beta2:float,lr:float,weight_decay:float,eps:float,maximize:bool,capturable:bool,# Needed for consistency.differentiable:bool,)->None:grad_scale_dict={grad_scale.device:grad_scale}ifgrad_scaleisnotNoneelseNonefound_inf_dict={found_inf.device:found_inf}iffound_infisnotNoneelseNonegrouped_tensors=_group_tensors_by_device_and_dtype([params,grads,exp_avgs,exp_avg_sqs,max_exp_avg_sqs,state_steps])for(device,dtype)ingrouped_tensors:(device_params,device_grads,device_exp_avgs,device_exp_avg_sqs,device_max_exp_avg_sqs,device_state_steps,)=grouped_tensors[(device,dtype)]device_grad_scale,device_found_inf=None,Noneifgrad_scaleisnotNone:ifdevicenotingrad_scale_dict:grad_scale_dict[device]=grad_scale.to(device,non_blocking=True)device_grad_scale=grad_scale_dict[device]iffound_infisnotNone:iffound_infnotinfound_inf_dict:found_inf_dict[device]=found_inf.to(device,non_blocking=True)device_found_inf=found_inf_dict[device]torch._foreach_add_(device_state_steps,1)torch._fused_adam_(device_params,device_grads,device_exp_avgs,device_exp_avg_sqs,device_max_exp_avg_sqs,device_state_steps,amsgrad=amsgrad,lr=lr,beta1=beta1,beta2=beta2,weight_decay=weight_decay,eps=eps,maximize=maximize,grad_scale=device_grad_scale,found_inf=device_found_inf,)ifdevice_found_infisnotNone:torch._foreach_sub_(device_state_steps,[device_found_inf]*len(device_state_steps))
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.